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abstract  

Ancie  nt DNA studies have always refreshed our understanding of the human past that cannot be tracked 
by modern DNA alone. Until recently, ancient mitochondrial genomic studies in East Asia were still very 
limited. Here, we retrieved the whole mitochondrial genome of an 8,400-year-old individual from Inner 
Mongolia, China. Phylogenetic analyses show that the individual belongs to a previously undescribed clade 
under haplogroup C5d that most probably originated in northern Asia and may have a very low frequency 
in extant populations that have not yet been sampled. We further characterized the demographic history 
of mitochondrial haplogroups C5 and C5d and found that C5 experienced a sharp increase in population 
size starting around 4,000 years before present, the time when intensive millet farming was developed by 
populations who are associated with the Lower Xiajiadian culture and was widely adopted in northern 
China. We caution that people related to haplogroup C5 may have added this farming technology to their 
original way of life and that the various forms of subsistence may have provided abundant food sources 
and further contributed to the increase in population size.

Mitoch    ondrial DNA (mtDNA) possesses 
several favorable characteristics, includ-
ing strictly maternal inheritance, multi-

p  le copies in the cell, high mutation rate compared 
with nuclear DNA, small genome size, and high 
level of sequence polymorphisms. All these fea-
tures make mtDNA a unique and frequently used 
marker to explor  e population genetic diversity and 
structures (González-Martín et al. 2015; Kivisild 

2015; Postillone and Perez 2017; Ricaut et al. 2006; 
Stoneking 1994). In rece  nt years, much insight has 
been gained into the prehistory of populations in 
East Asia by studying short fragments of mtDNA 
(hyperva  r  iable regions [HVRs]) and, increasingly, 
whole mitochondrial genomes of present-day 
populations. However  , studies of ancient DNA 
(aDNA) in other regions have always refreshed 
our understanding of the human past that cannot 
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be tracked from the modern DNA alone, because 
of frequent population replacements and inter-
breeding (Reich 2018; Sikora et al. 2019; Slatkin 
and Racimo 2016). In this sense, aDNA provides 
a direct time transect and plays a pivotal role in 
understanding East Asi  an prehistory, where only 
very limited ancient mitochondrial genomes are 
available (Fu et al. 2013; Ning et al. 2016).

The Yumin (YM) site is located in Ulanchap, 
Inner Mongolia, China (Fig. 1). The site was fĳirst 
excavated in 2010 by a joint efffort of the Inne r 
Mongolia Autonomous Region Institute of Cul-
tural Relics and Archaeology, Ulanchap Municipal 
Museum, and Huade County Administration of 
Cultural Relics; later, between 2014 and 2016, a 
second season of excavation was carried out by the 
same group. A total of 14 house foundations, 1 ash 
ditch, and 1 tomb were found inside the site. The 
house foundations were round and semisubter-
ranean, with a round hearth standing in the middle, 
without traces of gateway or obvious posthole s. The 
ash ditch was at the southwest of the excavation 
area, in the direction of southeast to northwest, 
and the tomb was under the floor of house F1. 
It is an earthen shaft pit tomb with completely 
well-preserved human bones and no grave goods, 
dated to 8,400 years before present (BP) (Fig. 1). 

The number of cultural relics unearthed from YM 
was relatively small (1,500 pieces in total), most of 
which are stone tools, followed by some pottery 
pieces and bone tools. The stone tools were made of 
gray and black mudstone (the majority), sandstone 
(second largest number), flint, quartzite, and other 
types (Fig. 1). The shapes of the stone tools vary, 
including semicircular shovels, flake choppers, 
spear-shaped tools, stone cores, and stone balls. 
Few of the pottery pieces could be restored; most 
pottery relics were small pottery shards, including 
sand inclusion yellow and brown pottery and black 
and brown pottery, made using the mud-piece past-
ing technique. The shapes of the pottery included 
round-bottom and barrel-shaped jars, sharp and 
round-bottom fu (caldrons), flake objects, and 
flared-mouth jars (Dang 2015, 2017).

All the above evidence shows that the YM 
people lived a relatively primitive way of life in the 
transition period from the Mesolithic to Neolithic 
and belonged to a culture that is diffferent from 
other contemporaneous and later cultures from 
the nearby regions. They thus provide unique and 
valuable material in understanding the prehistory 
of populations in this region (Hu 2017).

Here we   target-enriched and sequenced the 
complete mitochondrial genome of the only 

FIGURE 1. (A) Geographic 

location of Yumin site. (B) Human 

skeleton and archaeological 

relics excavated from the Yumin 

site. The individual was the only 

human skeleton excavated in 

an earthen sha
  pit tomb, with 

fl exed and squat burial. Two 

fundamentally diff erent types of 

stone tools, chipped stone and 

ground stone, coexisted in the 

Yumin site.
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human remain from the YM site. The individual is 
female, based on physical anthropology analysis; 
was dated to 8,400 years BP; and was assigned to 
mitochondrial haplogroup subclade C5. By com-
parison with a large data set of mtDNA publicly 
available that belonged to haplogroup C5, we re-
constructed the phylogeny and the demographic 
history of haplogroup C5 and further tracked the 
relations between the ancient and present-day 
populations in East Asia.

Mat  erials and Methods

Archaeological Context
The YM site is located in the Huade County, Ulanc-
hap, Inner Mongolia Autonomous Region, China 
(42°3′ N, 114°18′ E). Between 2010 and 2016, two 
seasons of excavations were conducted by a joint 
efffort of the Inner Mongolia Autonomous Region 
Institute of Cultural Relics and Archaeology, the 
Ulanchap Municipal Museum, and the Huade 
County Administration of Cultural Relics. Only 
one intact human remain (individual HDY) was 
excavated in the site and was radiocarbon dated 
to 8,400 BP.

Ancient DNA Lab Works
Two well-preserved molars were collected from 
the HDY individual for aDNA analyses. All aDNA 
analyses were carried out following the strict stan-
dards specially designed to minimize the potential 
modern DNA contamination (Adler et al. 2011; 
Llamas et al. 2016). Specifĳically, the teeth samples 
were immersed in a 5% liquid sodium hypochlo-
rite (bleach) for 10 min and were then washed by 
ultrapure water and 100% ethanol, followed by the 
ultraviolet irradiation on each side of the teeth. 
Then 150-mg fĳine tooth powder was prepared by 
using a dental d rill (STRONG 90) (Li et al. 2011; 
Zhang et al. 2018). DNA was extracted from the 
teeth in a dedicated clean room specially designed 
for aDNA studies at the aDNA lab of Jilin University, 
using an in-solu  tion silica-based protocol (Li et al. 
2010; Yang et al. 1998).

The double-stranded libraries were built by the 
NEBNext Ultra DNA Library Prep Kit (New England 
Biolabs, Beijing, China) following the manufac-
turer’s instructions, but with minor corrections. 
Specifĳically, we diluted the adaptor (15 µM) to 1.5 

µM with a 10-fold dilution (1:9) in sterile water 
for immediate use. The libraries were then puri-
fĳied using Agencourt Ampure X  P Bead (Beckman 
Coulter) 1:1.5 DNA-to-bead ratio and were quanti-
fĳied using the Qubit fluorometer (Life Technologies, 
Paisley, UK) and the Agilent Bioanalyzer 2100 (Agi-
lent Technologies, Santa Clara, CA, USA). mtDNA 
enrichment was performed using the MyGe  nostics 
Human Mitochondria Capture Kit (MyGenostics 
Inc., Beijing, China). The postcapture libraries 
were then amplifĳied for 15 PCR cycles and were 
sequenced on an Illumina HiSeq X10 platform.

Genetic Data Processing
The raw fastq data were processed by EAGER, ver-
sion 1.92.50, an automated computational pipeline 
specially designed for aDNA data processing (Pelt-
zer et al. 2016). Quality fĳiltering was performed 
with FastQC software (Babraham Bioinformat-
ics; http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and the adapters were trimmed 
with AdapterRemoval, version 2.2.0 (Schubert 
et al. 2016). The reads were then aligned to the 
revised Cambridge Reference Sequence (rCRS; 
accession NC_012920) using B WA 0.7.12, with only 
sequence lengths larger than 30 bp considered, and 
the duplications were removed using the default 
parameter of the DeDup software (Li and Durbin 
2009; Li et al. 2009). Single-nucleotide polymor-
phisms (SNPs), insertions, and deletions (INDELs) 
were cal led using SNVer-0.5.2 (Wei et al. 2011). The 
SNPs and the INDELs were then double confĳirmed 
by visual inspection with the Integrative Genomics 
Viewer (Thorvaldsdóttir et al. 2013). We then ap-
plied the default parameters of mapDamage 2.0 to 
determine the molecular damage that is typical of 
aDNA (Jónsson et al. 2013).

Phyloge  netic Analysis and Coalescent 
Simulations of the HDY DNA
We prepared a large data set of complete mito-
chondrial sequences that belong to haplogroup   C5 
from the MitoTool database (http://mitotool.kiz.
ac.cn) and the MitoMap database (https://www.
mitomap.org/MITOMAP), as well as those from 
the literature (Derenko et al. 2010, 2012; Dryomov 
et al. 2019; Li et al. 2019; Mielnik-Sikorska et al. 
2013). The sequences were then aligned to the 
rCRS using BioEdit, version 14.0 (Hall 2011). We 
constructed the phylogenetic tree of haplogroup 
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C5 with mtPhyl  software (Eltsov and Volodko 
2011; https://sites.google.com/site/mtphyl/home). 
A network was constructed by reduced median-
joining method in Network, version 4.5.1.16 (Ban-
delt et al. 1999; http://www.fluxus-engineering.
com). Mutations A16182C, A16183C, T16189C, 
and C16519T were systematically ignored, as they 
are known to represent either the mutational 
hotspots or recurrent sequencing artifacts that 
may create reticulat  ions in the following phylo-
genetic analysis (Der Sarkissian et al. 2014). We 
further   performed the molecular variance analysis 
by focusing on the 393-bp HVR-I sequences (np 
16,017–16,409), using Arlequin, version 3.11.11 
(Excofffĳier et al. 2007). Multidimensional scal-
ing (MDS) analysis was performed based on the 
FST matrix calculated between pairs of selected 
populations, with the FST values with a p < 0.05 
discarded. The isofrequency map of haplogroup 
C5 was generated using Surfer 12 (Golden Soft-
ware Inc., Golden, CO, USA), following the kriging 
procedure. The information of haplogroup C5d is 
summarized in Supplementary Table S1.

A total of 111 complete mitochondrial sequences 
that belong to haplogroup C5 were collected. Using 
these sequences, we next constructed a Bayes sky-
line plot to estimate the efffective population size 
changes across time, as implemented in BEAST 
version 2.4.1 (Drummond et al. 2012; Green 1995). A 
general   time-reversible sequence-evolution model 
with a fĳixed fraction of invariable sites was deter-
mined to be the best-fĳit model as estimated with 
jMode  lTest, version 2.1.415 (Darriba et al. 2012). We 
ran 40,000,000 generations of the Markov chain 
Monte Carlo simulation, with the fĳirst 4,000,000 
generations discarded as burn-in. We applied difffer-
ent clock rates for nucleotides in the coding region 
(np 577–16023; 1.708 × 10–8 substitutions per site 
per year) and noncoding region (np 16024–576; 
9.883 × 10–8 substitutions per site per year). The 
BEAST outputs were then analyzed with Tracer, 
version 1.4 (Rambaut and Drummond 2007).

Resul  ts and Discussion

Authentication and Data Statistics 
of the HDY Individual
We generated a high-quality mitochondrial genome 
for the HDY individual. A total o  f 56,946 unique 

reads were aligned to the rCRS. After removing 
duplicated fragments, we obtained an average of 
383-fold coverage across the complete mitochon-
drial genome. We verifĳied the authentication of 
our data by identifying the high deamination rate 
at both 3′ and 5′ ends (Supplementary Fig. S1), as 
well as the relatively short fragment length of 113 
base pairs, which are characteristic of aDNA. We 
then estimate the mitochondrial contamination 
rate by ContamMix (  Fu et al. 2013), a likelihood-
based method to predict the sequencing error rate 
present in the data set as a uniform per base error 
rate. As a result, a low contamination rate of 1.2% 
(95% confĳidence interval, 1–1.4%) was identifĳied. 
All these analyses confĳirm the authentication of 
our aDNA data.

The Maternal Genetic Relationship between 
the HDY Individual and Present-Day Worldwide 
Populations
To evaluate the genetic afffĳinity of the HDY indi-
vidual with present-day worldwide populations, 
we compared the HDY mitochondrial sequences 
with a large data set of present-day populations 
by focusing only on the HVR-I region (393 bp, 
spanning np 16,017–16,049). The data set includes 
Turkish, Japanese, Korean, Evenk, Yakut, Buryat, 
Oroqen, Mongolian, and Han Chinese (including 
the northern Han and southern Han) populations, 
the Tibeto-Burman-speaking populations, and pop-
ulations from Central Asia and Europe (Derenko et 
al. 2003; Horai et al. 1996; Kolman et al. 1996; Kong 
et al. 2003; Li et al. 2007; Pakendorf et al. 2003; Wen 
et al. 2004a, 2004b; Yao et al. 2002, 2004; Zhao et al. 
2009). We carried out MDS analysis based on a ma-
trix of FST distances (Fig. 2). Three diffferent clusters 
are found in the fĳirst two dimensions, comprising 
west Eurasians (Europeans, Turkish, and Central 
Asians), Northeast Asians (Yakut, Buryat, Oroqen, 
Evenk, and Mongolian), and the Sino-Tibetan-
speaking groups (including the Tibetan-Burmans, 
Han Chinese, and the Tibetans, but not Japanese 
and Korean). The HDY individual forms a cluster 
with the Tungusic (Oroqen and Evenk) and the 
Mongolic speakers (Buryat, Yakut, and Mongolian), 
who are all from Northeast Asia. This suggests 
that the HDY individual has a close relationship 
with populations from East Asia, in particular with 
the northern ones, which mirrors the geographic 
location of the HDY individual.
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Phylogenetic Analysis Reveals the HDY 
Individual Belongs to a Novel Subclade 
of Haplogroup C5d
By aligning against the rCRS (PhyloTree build 
17), we identifĳied 38 polymorphisms, 1 insertion, 
and 2 deletions (Table 1) for the mitochondrial 
sequence of the HDY individual, which assigned it 
to mitochondrial haplogroup C5d, in accordance 
with the current phylogeny. Haplogroup   C5 is 
one of the principal subclades of haplogroup C 
(Derenko et al. 2010). Today haplogroup C5 has a 
wide distribution: 7.9% in Northeast Asia, 2.6% in 
Russian Far East, 3.3% in the Altai region, 1.2% in 
the Lake Baikal region, 4.5% in western Siberia, 
0.82% in Southeast Asia, and 0.8% in Eastern Asia, 
including the Korean (0.1%), Japanese (0.1%), and 
Chinese (0.8%), as well as in the historical Xiongnu 
populations from Mongolia and Transbaikal region 
(Derenko et al. 2010). However, haplogroup C5 
reaches its highest frequency in some Tungusic-
speaking populations, including the east Evenk 
(26.7%), Negidal (6.1%), Evens (11.5%), and Ulchi 
(5.8%), as well as in Koryak (15.4%) and Itelmen 
(13%) (Derbeneva et al. 2002; Derenko et al. 2007; 
Derenko and Shields 1997; Starikovskaya et al. 2005; 
Tamm et al. 2007) (Supplementary Fig. S2). All of 
those populations are mainly located in Northeast 
Asia, consistent with what we have observed in the 
MDS analysis.

So far, two subhaplogroups, C5d1 as defĳined by 

the transitions at G1415A, A  8  188G, and G16390A 
and C5d2 defĳined by the transitions at A10682G 
and G13968A under haplogroup C5d have been 
identifĳied. The median-joining network shows that 
the HDY individual does not form a clade with 
either C5d1 or C5d2 but instead lies in a separate 
branch (Fig. 3). This observation is further con-
fĳirmed by the phylogenetic tree constructed by the 
mtPhyl analysis: the HDY individual is assigned to 
the subclade of haplogroup C5d and cannot be 
further assigned to either C5d1 or C5d2 because of 
a private mutation at A13105G, two deletions at 248 
and 3,106, and one insertion at 594 (Fig. 4). Thus, 
we conclude that the HDY individual belongs to a 
previously undescribed subclade under C5d that 
may be present in very low frequency in extant 
populations that have not yet been sampled.

FIGURE 2. A multidimensional 

scaling (MDS) analysis plot based 

on the FST matrix calculated 

from the HVR-I sequences of the 

HDY individual and the modern 

populations: BUR, Buryat; CA, 

Central Asians; EUR, Europeans; 

EWK, Evenki; JAP, Japanese; 

KOR, Korean; MG, Mongolian; 

NH, northern Han Chinese; 

ORO, Oroqen; SH, southern Han 

Chinese; TB, Tibeto-Burman; 

TURK, Turkish; YAK, Yakut.

Table 1. Summary of the HDY Sequence Data

  Measure Result

Average sequence depth 383-fold

Total reads aligned to reference 56,946

Average read length of trimmed 
reads

113.4 bp

Mitochondrial haplogroup Previous undefi ned subclade of C5d

Mutation sites 73G, 248d, 263G, 489C, 594+C, 750G, 1438G, 2706G, 3106d, 
3552A, 4715G, 4769G, 7028T, 7196A, 8584A, 8701G, 8860G, 
9540C, 9545G, 10398G, 10400T, 10873C, 11719A, 11914A, 
12705T, 13105G, 13263G, 14318C, 14766T, 14783C, 15043A, 
15080G, 15301A, 15326G, 15487T, 16093C, 16223T, 16288C, 
16298C, 16327T, 16519C
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FIGURE 3. Median-joining 

network based on all available 

complete mitochondrial 

sequences of haplogroup C5d in 

the data set. The HDY individual 

forms a unique clade under 

haplogroup C5d.

FIGURE 4. Phylogeny of 

mitochondrial haplogroup C5.

Demographic History of HDY Inferred from 
Whole Mitochondrial Genomes
We reconstructed population demographic his-
tories based on the mitochondrial sequences of 
haplogroup C5 and C5d, respectively. The skyline 
plot indicates that populations related to hap-
logroup C5 experienced a sharp increase in size 
beginning around 4,000 BP (Fig. 5a),   a time period 
when populations associated with the Lower Xia-
jiadian culture in northern China had engaged in 
intensive millet farming and when millet farming 
had been widely applied across East Asia (Zhang 
et al. 2017). Meanwhile, wheat was   also introduced 

to northern China from the Near East, together 
with other forms of crops (Betts et al. 2014). We 
argue that  populations carrying haplogroup C5 
may have learned those farming technologies and 
added them to their original way of life, and that 
these various food strategies provided abundant 
food resources and fĳinally facilitated the increased 
population size. In contrast, a relatively small and 
stable efffective population size was observed for 
C5d, which may indicate that populations related 
to this clade did not contribute to the increase of 
the population size (Fig. 5b). Although no ancient 
individual in the nearby region published in the 
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literature belongs to haplogroup C5, this may be 
partly because of the relatively limited ancient 
individuals sequenced in this region, and it is highly 
likely that this haplogroup was also present at a 
very low frequency in ancient populations as it is 
in present-day populations (Cui et al. 2013; Li et 
al. 2011). We further estimate the coalescence time 
and associated 95% highest posterior density for 
haplogroup C5d lineage. The estimated coalescence 
time for C5d varies from 9,000 to 14,000 years BP, 
with a median coalescence time of 11,500 years BP, 
a time consistent with the previous study (Derenko 
et al. 2010). Given that  the HDY individual is dated 
to 8,400 years BP and belongs to a subclade of 
C5d, this provides an ideal time-stamped signal 
to understand the divergence and phylogenetic 
history for the formation of C5d.

Taken together, we describe a clear case study 
of a single ancient mitochondrial genome in tracing 
the population prehistory, and this study shows 
that interdisciplinary research combining genetic 
and archaeological evidence can provide a more 
extensive picture of prehistoric human popula-
tions. Further studies on large numbers of samples, 
in particular, those from diffferent time periods, will 
provide greater insight into the demographics of 
population genetic history of East Asia.
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Supplementary Table S1. Information on Haplogroup C5d

Haplogroup / Accession Number Location / Population Reference

C5d1

EU482303.1 East Siberia / Yukaghir Volodko et al. 2008

EU482307.1 East Siberia / Yukaghir Volodko et al. 2008

EU482329.1 East Siberia / Yukaghir Volodko et al. 2008

EU828637.1 South Siberia / Tuvan Starikovskaya et al. 2005

FJ951440.1 Altai / Altaians Derenko et al. 2010

KF148223.1 Siberia / Evenk Duggan et al. 2013

KF148224.1 Siberia / Evenk Duggan et al. 2013

KF148238.1 Siberia / Evenk Duggan et al. 2013

KF148248.1 Siberia / Evenk Duggan et al. 2013

KF148274.1 Siberia / Even Duggan et al. 2013

KF148318.1 Siberia / Even Duggan et al. 2013

 KF148574.1 East Siberia / Yukaghir Duggan et al. 2013

FJ951576.1 South Siberia / Khamnigan Derenko et al. 2010

C5d2

JF824872.2 China / Chinese Liu et al. 2011

JF824965.2 China / Chinese Liu et al. 2011

DQ112787.3 China / Chinese Kivisild et al. 2006

A76LAJ36I31S (sample no.) China / Chinese Li et al. 2019

SUPPLEMENTARY FIGURE S1 

�above�. Ancient DNA damage 

patterns for the HDY individual. 

The mismatch frequency is 

relative to the reference as a 

function of read position; C to 

T misincorporation is shown 

in red, and G to A, in blue. The 

lower misincorporation in the 5́  

end than in the 3́  end might be 

caused by using the Q5 enzyme 

when applying the DNA library.

SUPPLEMENTARY FIGURE 

S2 �right�. Spatial frequency 

distribution map of mitochondrial 

haplogroup C5.




